A graph is edge-transitive if the natural action of its automorphism group on its edge set is transitive. An automorphism of a graph is semiregular if all of the orbits of the subgroup generated by this automorphism have the same length. While the tetravalent edge-transitive graphs admitting a semiregular automorphism with only one orbit are easy to determine, those that admit a semiregular automorphism with two orbits took a considerable effort