2008
DOI: 10.3390/s8106496
|View full text |Cite
|
Sign up to set email alerts
|

Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks

Abstract: A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, whi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
1

Year Published

2009
2009
2024
2024

Publication Types

Select...
6
2
1

Relationship

2
7

Authors

Journals

citations
Cited by 23 publications
(16 citation statements)
references
References 16 publications
0
15
0
1
Order By: Relevance
“…Por ello se propuso la sustitución de la primera etapa basada en PCA por SFFS, que es igualmente válida para la detección de fallas tal y como se demuestra en la Fig. 4 (derecha) e indicó que las líneas de emisión relacionadas con el gas de aporte son más relevantes para la clasificación que las de los componentes fundamentales del material a soldar, que en este caso era acero inoxidable AISI-304 [32].…”
Section: B Monitorización En Línea De Procesos De Soldaduraunclassified
“…Por ello se propuso la sustitución de la primera etapa basada en PCA por SFFS, que es igualmente válida para la detección de fallas tal y como se demuestra en la Fig. 4 (derecha) e indicó que las líneas de emisión relacionadas con el gas de aporte son más relevantes para la clasificación que las de los componentes fundamentales del material a soldar, que en este caso era acero inoxidable AISI-304 [32].…”
Section: B Monitorización En Línea De Procesos De Soldaduraunclassified
“…Specifically, it is estimated in terms of the Bhattacharyya distance as in [22]: JB=14(μ2μ1)Ttrue[1+2true](μ2μ1)+12log(|1+2|2(|1||2|)12)where μ i is the mean of the i class; Σ i its covariance matrix and |Σ i | stands for the determinant of matrix Σ i There are only two classes to be distinguished here: correct seams and defects. Therefore, the overall separability among the classes to be discriminated is straightly given by (4).…”
Section: Sequential Floating Forward Selection Of Spectral Bandsmentioning
confidence: 99%
“…Different techniques have been explored for on-line welding quality monitoring, from plasma spectroscopy 12 to infrared thermography, 3 machine vision 4 or acoustic monitoring, 5 also involving the employment of various processing techniques, such as artificial neural networks, 6 fuzzy logic, 7 redundancy removal, 6 feature selection 8 or optimization algorithms, 9 just to mention some examples. The complexity of the welding process (independently of the specific variety: arc, laser, plasma, etc.)…”
Section: Introductionmentioning
confidence: 99%