Humans did not arrive on most of the world’s islands until relatively recently, making islands favorable places for disentangling the timing and magnitude of natural and anthropogenic impacts on species diversity and distributions. Here, we focus on
Amazona
parrots in the Caribbean, which have close relationships with humans (e.g., as pets as well as sources of meat and colorful feathers). Caribbean parrots also have substantial fossil and archaeological records that span the Holocene. We leverage this exemplary record to showcase how combining ancient and modern DNA, along with radiometric dating, can shed light on diversification and extinction dynamics and answer long-standing questions about the magnitude of human impacts in the region. Our results reveal a striking loss of parrot diversity, much of which took place during human occupation of the islands. The most widespread species, the Cuban Parrot, exhibits interisland divergences throughout the Pleistocene. Within this radiation, we identified an extinct, genetically distinct lineage that survived on the Turks and Caicos until Indigenous human settlement of the islands. We also found that the narrowly distributed Hispaniolan Parrot had a natural range that once included The Bahamas; it thus became “endemic” to Hispaniola during the late Holocene. The Hispaniolan Parrot also likely was introduced by Indigenous people to Grand Turk and Montserrat, two islands where it is now also extirpated. Our research demonstrates that genetic information spanning paleontological, archaeological, and modern contexts is essential to understand the role of humans in altering the diversity and distribution of biota.