Palynology is a multi-disciplinary field of science that deals with the study and application of extinct, [fossilised] and extant palynomorphs (pollen and spore) and other related microscopic biological entities in the environment. It is divided into palaeo- and actuo-palynology, and provides substantial proxies to understanding past and present vegetation dynamics respectively. With reference to the two geological principles of uniformitarianism and of the evolution of fauna/flora, the distribution of plant indicators across ecological zones, palynomorph morphology and pollen analysis, palynology can be used to identify the change in past and present local and regional vegetation and climate and humans impact on the environment. Other supportive areas of endeavour like radiocarbon dating, sedimentology, taphonomic processes and geomorphology can be used to triangulate inferences drawn from palynological data. Palynomorphs are made of outer cell walls embedded with an inert, complex and resistant biopolymeric signature (called sporopollenin) which helps to facilitate long term preservation in different environmental matrices under favourable conditions, hence its widespread applicability. Palynology have proven to very reliable in reconstructing past vegetation, decrypting essential honeybee plants and understanding the impact of climate on plant population using pollen analysis, for which is the basis for the application of palynology in environmental studies. The application of palynology in climate, vegetation and anthropogenic studies begins with the selection of matrix (sediments from lake, river, ocean, excavation, relatively intact soil profile, bee products), coring or collection of samples, subjection to a series of chemically aided digestion, separation, physical filtration, decanting, accumulating of palynomorphs, microscopic study and ends with the interpretation of recovered information. Literature review on the application of palynology for understanding vegetation and climate interactions is presented in this paper.