Plants emit ultrasound pulses under drought stress, which originate in their water-carrying xylem vessels, and can be recorded externally. We demonstrate that these ultrasound pulses consist of superposed damped oscillations at plant-specific frequencies in the range of 10 – 150 kHz, that are correlated to xylem dimensions. We present a method to relate geometrical and viscoelastic properties of xylem vessels with the time- and frequency-domain characteristics of the observed oscillations. We apply the method to ultrasound pulses from drying shoots of three vascular dicot plant species. The extracted parameters are validated with destructive measurements of xylem vessel radii, wall thickness, length of xylem vessel elements, and the elastic modulus of the vascular bundle by optical and scanning cryo-electron microscopy and tensile loading. Our method demonstrates the potential for non-invasive and continuous monitoring of plant vascular anatomy. We foresee applications in high-throughput phenotyping and early detection of vascular wilt diseases.