A virtual power plant (VPP) can be defined as the integration of decentralized units into one centralized control system. A VPP consists of generation sources and energy storage units. In this article, based on real measurements, the charging and discharging characteristics of the battery energy storage system (BESS) were determined, which represents a key element of the experimental virtual power plant operating in the power system in Poland. The characteristics were determined using synchronous measurements of the power of charge and discharge of the storage and the state of charge (SoC). The analyzed private network also includes a hydroelectric power plant (HPP) and loads. The article also examines the impact of charging and discharging characteristics of the BESS on its operation, analyzing the behavior of the storage unit for the given operation plans. The last element of the analysis is to control the power flow in the private network. The operation of the VPP for the given scenario of power flow control was examined. The aim of the scenario is to adjust the load of the private network to the level set by the function. The tests of power flow are carried out on the day on which the maximum power demand occurred. The analysis was performed for four cases: a constant value limitation when the HPP is in operation and when it is not, and two limits set by function during normal operation of the HPP. Thus, the article deals not only with the issue of determining the actual characteristics of charging and discharging the storage unit, but also their impact on the operation of the entire VPP.