Summary
In this study, a depth‐integrated nonhydrostatic flow model is developed using the method of weighted residuals. Using a unit weighting function, depth‐integrated Reynolds‐averaged Navier‐Stokes equations are obtained. Prescribing polynomial variations for the field variables in the vertical direction, a set of perturbation parameters remains undetermined. The model is closed generating a set of weighted‐averaged equations using a suitable weighting function. The resulting depth‐integrated nonhydrostatic model is solved with a semi‐implicit finite‐volume finite‐difference scheme. The explicit part of the model is a Godunov‐type finite‐volume scheme that uses the Harten‐Lax‐van Leer‐contact wave approximate Riemann solver to determine the nonhydrostatic depth‐averaged velocity field. The implicit part of the model is solved using a Newton‐Raphson algorithm to incorporate the effects of the pressure field in the solution. The model is applied with good results to a set of problems of coastal and river engineering, including steady flow over fixed bedforms, solitary wave propagation, solitary wave run‐up, linear frequency dispersion, propagation of sinusoidal waves over a submerged bar, and dam‐break flood waves.