Diploid clones of the hybrid acacia (Acacia mangium × A. auriculiformis) are widely planted in Vietnam because of their high productivity, adaptability, and commercial wood yields. Polyploid breeding offers possibilities for further enhancing hybrid vigor and generating new high value genotypes. In a field trial, we compared three diploid hybrid clones with their respective colchicine-induced tetraploid lines. Flowering and seed production of each cytotype were observed and open pollinated seed collected for determination of outcrossing rate and ploidy, inbreeding depression and marker inheritance in the progeny. Comparisons are also made with published characteristics of autotetraploids derived from A. mangium. Compared with their corresponding diploid cytotypes, the allotetraploids flowered slightly later but more intensely; produced the same number of seeds per pod but larger seeds; and showed a greatly reduced level of outcrossing (an average of 14% compared with 87%). Inbreeding depression for height growth was less for progeny from the allotetraploid lines (17%) than for those from the original diploids (33%). 96% of seeds from the allotetraploid clones were also tetraploid, but we observed triploids at low frequency at both the seed and field progeny stages. The segregation of the molecular markers in outcrossed allotetraploid progenies demonstrated both disomic and tetrasomic inheritance, indicating that the hybrid behaves as a segmental allotetraploid. Results suggest that an open pollinated breeding strategy is a practical option for improving polyploid acacia hybrids.