Papers on the analysis of means (ANOM) have been circulating in the quality control literature for decades, routinely describing it as a statistical stand-alone concept. Therefore we clarify that ANOM should rather be regarded as a special case of a much more universal approach known as multiple contrast tests (MCTs). Perceiving ANOM as a grand-mean-type MCT paves the way for implementing it in the opensource software R. We give a brief tutorial on how to exploit R's versatility and introduce R package ANOM for drawing the familiar decision charts. Beyond that, we illustrate two practical aspects of data analysis with ANOM: firstly, we compare merits and drawbacks of ANOM-type MCTs and ANOVA F-test and assess their respective statistical powers, and secondly, we show that the benefit of using critical values from multivariate t-distributions for ANOM instead of simple Bonferroni quantiles is oftentimes negligible.