Abstract:High-resolution experiments on several apparently two-state proteins point to the existence of partially structured excited- or intermediate-states in dynamic equilibrium with native states. Are these intermediate states the byproducts of functional constraints that are by necessity evolutionarily conserved or are they merely the hidden imprints of evolutionary processes? To investigate this, we characterize the folding of Barstar that has a rich history of complex conformational behavior employing a combinati… Show more
“…Interestingly, we further observed that optimization of the surface charges of TNfn3 significantly reduces the energetic frustration in the MUT TNfn3 compared to the WT. This reduction of energetic frustration upon optimization of charge− charge interactions was previously demonstrated by us using C α -structure-based model 30 and is also in agreement with recent computer simulations of Naganathan et al 31 We also explored the interrelationship between charge− charge interactions and folding mechanism from the correlated fluctuations of the C α atoms at different states for all the three systems of TNfn3. The correlation map captures both the native and non-native interactions from local fluctuations of C α positions of each residue.…”
Charge-charge interactions play an important role in thermal stability of proteins. We employed an all-atom, native-topology-based model with non-native electrostatics to explore the interplay between folding dynamics and stability of TNfn3 (the third fibronectin type III domain from tenascin-C). Our study elucidates the role of charge-charge interactions in modulating the folding energy landscape. In particular, we found that incorporation of explicit charge-charge interactions in the WT TNfn3 induces energetic frustration due to the presence of residual structure in the unfolded state. Moreover, optimization of the surface charge-charge interactions by altering the evolutionarily nonconserved residues not only increases the thermal stability (in agreement with previous experimental study) but also reduces the formation of residual structure and hence minimizes the energetic frustration along the folding route. We concluded that charge-charge interaction in the rationally designed TNfn3 plays an important role not only in enhancing the stability but also in assisting folding.
“…Interestingly, we further observed that optimization of the surface charges of TNfn3 significantly reduces the energetic frustration in the MUT TNfn3 compared to the WT. This reduction of energetic frustration upon optimization of charge− charge interactions was previously demonstrated by us using C α -structure-based model 30 and is also in agreement with recent computer simulations of Naganathan et al 31 We also explored the interrelationship between charge− charge interactions and folding mechanism from the correlated fluctuations of the C α atoms at different states for all the three systems of TNfn3. The correlation map captures both the native and non-native interactions from local fluctuations of C α positions of each residue.…”
Charge-charge interactions play an important role in thermal stability of proteins. We employed an all-atom, native-topology-based model with non-native electrostatics to explore the interplay between folding dynamics and stability of TNfn3 (the third fibronectin type III domain from tenascin-C). Our study elucidates the role of charge-charge interactions in modulating the folding energy landscape. In particular, we found that incorporation of explicit charge-charge interactions in the WT TNfn3 induces energetic frustration due to the presence of residual structure in the unfolded state. Moreover, optimization of the surface charge-charge interactions by altering the evolutionarily nonconserved residues not only increases the thermal stability (in agreement with previous experimental study) but also reduces the formation of residual structure and hence minimizes the energetic frustration along the folding route. We concluded that charge-charge interaction in the rationally designed TNfn3 plays an important role not only in enhancing the stability but also in assisting folding.
“…Surface mutations also contribute to complex alteration of folded and unfolded ensembles apart from folding mechanisms [83–86]. It is therefore possible that even apparently neutral mutations modulate specific features of the native conformational ensemble which is however invisible or challenging to identify in the absence of a functional output.…”
A large body of work has gone into understanding the effect of mutations on protein structure and function. Conventional treatments have involved quantifying the change in stability, activity and relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming increasingly apparent that mutational perturbations consistently modulate the packing and dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from the mutated site. Such long-range modulation of protein features can distinctly tune protein stability and the native conformational ensemble contributing to allosteric modulation of function. In this review, I summarize a series of experimental and computational observations that highlight the incredibly pliable nature of proteins and their response to mutational perturbations manifested via the intra-protein interaction network. I highlight how an intimate understanding of mutational effects could pave the way for integrating stability, folding, cooperativity and even allostery within a single physical framework.
“…The Wako-Saitô-Muñoz-Eaton (WSME) model is one such statistical mechanical model that was first developed by Wako and Saitô ( Wako and Saito, 1978a , Wako and Saito, 1978b ), discussed in detail by Gō and Abe ( Go and Abe, 1981 , Abe and Go, 1981 ), and then later independently developed by Muñoz and Eaton (1999) . Originally seen as a physical tool to predict the folding rates of proteins from three-dimensional structures ( Muñoz and Eaton, 1999 , Henry and Eaton, 2004 ), the model has expanded its scope to quantitatively analyze folding behaviors of folded globular domains ( Bruscolini and Naganathan, 2011 , Garcia-Mira et al., 2002 , Narayan and Naganathan, 2014 , Narayan and Naganathan, 2017 , Narayan and Naganathan, 2018 , Naganathan and Muñoz, 2014 , Naganathan et al., 2015 , Munshi and Naganathan, 2015 , Rajasekaran et al., 2016 , Narayan et al., 2017 , Itoh and Sasai, 2006 ), repeat proteins ( Faccin et al., 2011 , Sivanandan and Naganathan, 2013 , Hutton et al., 2015 ), disordered proteins (with appropriate controls) ( Naganathan and Orozco, 2013 , Gopi et al., 2015 , Munshi et al., 2018a ), predict and engineer thermodynamic stabilities of proteins via mutations ( Naganathan, 2012 , Naganathan, 2013b , Rajasekaran et al., 2017 ) and entropic effects ( Rajasekaran et al., 2016 ), model allosteric transitions ( Itoh and Sasai, 2011 , Sasai et al., 2016 ), protein-DNA binding ( Munshi et al., 2018b ), quantifying folding pathways at different levels of resolution ( Henry et al., 2013 , Kubelka et al., 2008 , Gopi et al., 2017 ), force-spectroscopic measurements ( Imparato et al., 2007 ) and even crowding effects ( Caraglio and Pelizzola, 2012 ). …”
Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the ‘bWSME’ model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.