Intestinal epithelial cells are actively involved in the pathogenesis of inflammatory bowel disease resulting in an altered functional phenotype. The modulation of epithelial gene expression may occur as a consequence of proliferative, metabolic, immune, inflammatory, or genetic abnormalities. Differential screening of epithelial-cell-derived cDNA libraries (from control, ulcerative colitis, and Crohn's disease epithelial cells) and differential display of mRNA were used for investigation of disease-associated gene expression and modulation. Intestinal epithelial gene expression was successfully analyzed by both approaches. Using differential screening with clones encoding mitochondrial genes, quantitative overexpression was observed in both ulcerative colitis and Crohn's disease, while a unique expression of small RNA was noticed in Crohn's disease cells using Alu-homologous clones. Differential display demonstrated that several genes were differentially displayed among control, ulcerative colitis, and Crohn's disease epithelial cells. This was confirmed by immunohistochemical staining of pleckstrin, desmoglein 2 and voltage-dependent anion channel in control and inflammatory bowel disease mucosal samples. In summary, several inflammatory bowel disease-related associations were found. Since both differential screening and display have advantages and limitations, the combination of both techniques can generate complementary information, facilitate search for novel genes, and potentially identify genes uniquely associated with inflammatory bowel disease.