Previous studies on cognitive dynamics showed that oscillatory responses of P300 are composed of mainly delta and theta responses. In the present study, for the first time, the long-distance intra-hemispheric event related coherence (auditory oddball paradigm) and evoked coherence (simple sound) were compared in order to evaluate the effects of cognitive tasks on the long-distance coherences. Seventeen healthy subjects (8 female, 9 male) were included in the study. The coherence was analyzed for delta (1-3.5 Hz), theta (4-7.5 Hz) and alpha (8-13 Hz) frequency ranges for (F 3 -P 3 , F 4 -P 4 , F 3 -T 7 , F 4 -T 8 , F 3 -O 1, F 4 -O 2 ) electrode pairs. The coherence to target responses were higher than the non-target and simple auditory response coherence. This difference is significant for the delta coherence for both hemispheres and for theta coherences over the left hemisphere. The highest coherences were recorded at fronto-temporal locations for all frequency bands (delta, theta, alpha). Furthermore, frontoparietal coherences were higher than the fronto-occipital coherences for all frequency bands (delta, theta, alpha).These results show that the fronto-temporal and fronto-parietal connections are most relevant for the identification of the target signal. This analysis open the way for a new interpretation of dynamic localization results during cognitive tasks.