2014
DOI: 10.1016/j.eneco.2014.08.008
|View full text |Cite
|
Sign up to set email alerts
|

Are there gains from pooling real-time oil price forecasts?

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
41
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 79 publications
(43 citation statements)
references
References 16 publications
2
41
0
Order By: Relevance
“…The next section summarizes the real-time oil market data set, together with the forecast combination methods deployed by Baumeister and Kilian (2015), also considered by Baumeister, Kilian, and Lee (2014). The next section summarizes the real-time oil market data set, together with the forecast combination methods deployed by Baumeister and Kilian (2015), also considered by Baumeister, Kilian, and Lee (2014).…”
Section: Figure 1 Real Oil Price Measuresmentioning
confidence: 99%
“…The next section summarizes the real-time oil market data set, together with the forecast combination methods deployed by Baumeister and Kilian (2015), also considered by Baumeister, Kilian, and Lee (2014). The next section summarizes the real-time oil market data set, together with the forecast combination methods deployed by Baumeister and Kilian (2015), also considered by Baumeister, Kilian, and Lee (2014).…”
Section: Figure 1 Real Oil Price Measuresmentioning
confidence: 99%
“…We rely on data from a suitably updated real‐time database developed in Baumeister and Kilian (, ) and extended in Baumeister et al (,). The reader is referred to these references for a detailed description of the data sources and definitions.…”
Section: The Forecasting Environmentmentioning
confidence: 99%
“…We consider the West Texas Intermediate crude oil prices (WTI) as a proxy for crude oil. Recently, Alquist and Kilian (2010) [15], Alquist et al (2013) [18], Baumeister et al (2013Baumeister et al ( , 2014Baumeister et al ( , 2015 [13,17,19], [12], Xiong et al (2013) [20], Yin and Yang (2016) [21], Drachal (2016) [10] and Naser (2016) [11] all regarded WTI as a proxy variable for oil prices. We selected four factors: supply, demand, crack spread, and non-energy commodity prices.…”
Section: Empirical Results and Robustness Testmentioning
confidence: 99%
“…According to economic theory, supply and demand are the key factors for changing the price of a commodity. Therefore, many researchers employ it as an independent variable to forecast oil prices (Baumeister and Kilian (2012) [22], Fattouh et al (2013) [23], Hamilton (2009) [4], [12], Baumeister et al (2013Baumeister et al ( , 2014Baumeister et al ( , 2015 [13,17,19]), and we follow in their steps. For supply, two factors-oil production and oil inventory-were selected.…”
Section: Empirical Results and Robustness Testmentioning
confidence: 99%