Forest disturbances caused by pest insects are threatening ecosystem stability, sustainable forest management and economic return in boreal forests. Climate change and increased extreme weather patterns can magnify the intensity of forest disturbances, particularly at higher latitudes. Due to rapid responses to elevating temperatures, forest insect pests can flexibly change their survival, dispersal and geographic distributions. The outbreak pattern of forest pests in Finland has evidently changed during the last decade. Projection of shifts in distributions of insect-caused forest damages has become a critical issue in the field of forest research. The Common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini has resulted in severe growth loss and mortality of Scots pine (Pinus sylvestris L.) (Pinaceae) in eastern Finland. In this study, tree-wise defoliation was estimated for five different needle loss category classification schemes and for 10 different simulated airborne laser scanning (ALS) pulse densities. The nearest neighbor (NN) approach, a nonparametric estimation method, was used for estimating needle loss of 701 Scots pines, using the means of individual tree features derived from ALS data. The Random Forest (RF) method was applied in NN-search. For the full dense data (~20 pulses/m 2 ), the overall estimation accuracies for tree-wise defoliation level varied