Historical Background In the 1960s, it was shown that orally administered glucose induces a much stronger insulin response than that induced by intravenously administered glucose, despite the similar resulting plasma glucose levels; this was termed the "incretin effect" (Creutzfeldt 2005; Graaf et al. 2016). Gastric inhibitory peptide (GIP) was the first incretin hormone to be discovered in 1975, which is produced by K cells of the small intestine (Creutzfeldt 2005). It was then observed in 1981 that antibodies against GIP did not abolish the incretin effect which led to the discovery of glucagon-like peptide-1 (GLP-1) in the translational products of mRNAs isolated from pancreatic islets of anglerfish (Shields et al. 1981; Graaf et al. 2016). Subsequently, it was shown that hamster and human preproglucagon cDNAs encode GLP-1 and 2, but only GLP-1 possessed incretin activity (Graaf et al. 2016). After the discovery of GLP-1, research was undertaken to identify its receptor. The GLP-1 receptor (GLP-1R) was first cloned from a cDNA library derived from rat pancreatic islets in 1992, and in 1993 the human receptor was successfully cloned (Donnelly 2012; Graaf et al. 2016).