“…Specifically, on the basis of assembly-based strategy, ARGs-OAP (v1.0 and v2.0, http://smile.hku.hk/SARGs) (Yang et al, 2016;Yin et al, 2018), ARGs-OSP (http://smile.hku.hk/SARGs) (Zhang et al, 2020), PathoFact (https://git-r3lab.uni.lu/laura. denies/PathoFact/) (de Nies et al, 2021), ARG analyzer (ARGA, http://mem.rcees.ac.cn:8083/) (Wei et al, 2019), Resistance Gene Identifier (RGI, https://github.com/arpcard/ rgi) (Alcock et al, 2020), ResFinder (https://cge.cbs.dtu.dk/ services/ResFinder/), DeepARG (https://bench.cs.vt.edu/ deeparg) (Arango-Argoty et al, 2018), and HMD-ARG (http:// www.cbrc.kaust.edu.sa/HMDARG/) (Li et al, 2021a) were developed and have been widely applied to detect potential ARGs from the gene datasets predicted from metagenomic contigs (Figure 1B). Together with the ARG database, ARGs-OAP was designed as an online pipeline to fast annotate and classify ARG-like sequences from metagenomic data (Yang et al, 2016).…”