Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin, and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has traditionally been studied using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the “protein methylome”. They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, and to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases and methyl-binding “reader” domains. These tools are creating a “system-level” understanding of protein methylation, and integrating protein methylation into broader signaling processes.