2005
DOI: 10.1515/crll.2005.2005.578.93
|View full text |Cite
|
Sign up to set email alerts
|

Arithmetic Duality Theorems for 1-Motives

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
60
0
45

Year Published

2007
2007
2016
2016

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 35 publications
(106 citation statements)
references
References 15 publications
1
60
0
45
Order By: Relevance
“…Proof. By the previous corollary and the existence of the perfect "CasselsTate pairing" X 1 (A) × X 1 (B) → Q/Z ( [11], Corollary 4.9, and [8], Corollary 6.7), the dual of the second exact sequence appearing in Proposition 3.4 for B is an exact sequence…”
Section: Consequently By Lemma 44 We May Writementioning
confidence: 85%
“…Proof. By the previous corollary and the existence of the perfect "CasselsTate pairing" X 1 (A) × X 1 (B) → Q/Z ( [11], Corollary 4.9, and [8], Corollary 6.7), the dual of the second exact sequence appearing in Proposition 3.4 for B is an exact sequence…”
Section: Consequently By Lemma 44 We May Writementioning
confidence: 85%
“…It was already shown in [Harari and Szamuely 2005] that X 0 (k, M) is finite. The finiteness results stated in the second part of the theorem are new and are also the essential part of the theorem.…”
Section: Homogeneous Self-dual Projective Bundlesmentioning
confidence: 89%
“…The idea to unify and generalise these arithmetic duality theorems to duality theorems for 1-motives appeared first in [Harari and Szamuely 2005]. Deligne constructed for each 1-motive M a dual 1-motive M ∨ .…”
Section: Homogeneous Self-dual Projective Bundlesmentioning
confidence: 99%
See 1 more Smart Citation
“…Il est facile de voir directementà partir de la proposition 1 que le corollaire 1 reste valable en remplaçant la complétion ∧ par la "complétion partielle" ∧ = lim ← −n ./n. On obtient alors l'analogue (d'ailleurs plus simpleà démontrer) de la proposition 2 avec cette complétion partielle grâceà la suite exacte (17) de [Harari et Szamuely 2005]. Cela suffit pour prouver le théorème 1 par la même méthode, tout enévitant les complications topologiques.…”
Section: The Shimura Liftunclassified