1994
DOI: 10.1090/s0002-9939-1994-1198459-5
|View full text |Cite
|
Sign up to set email alerts
|

Arithmetic groups of higher 𝑄-rank cannot act on 1-manifolds

Abstract: Abstract.Let T be a subgroup of finite index in SLn(Z) with n > 3. We show that every continuous action of T on the circle 51 or on the real line R factors through an action of a finite quotient of T. This follows from the algebraic fact that central extensions of T are not right orderable. (In particular, T is not right orderable.) More generally, the same results hold if T is any arithmetic subgroup of any simple algebraic group G over Q , with Q-rank(G) > 2.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
53
0
8

Year Published

2002
2002
2020
2020

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 67 publications
(62 citation statements)
references
References 10 publications
1
53
0
8
Order By: Relevance
“…This result is well known. It follows from the work of Morris (Witte) in [18] (also see Ghys [9] and Burger and Monod [3]). The corollary above holds for a large family of lattices that contain two commuting sublattices that satisfy the hypothesis of Theorem 1.5.…”
Section: Kazhdan Groupsmentioning
confidence: 93%
“…This result is well known. It follows from the work of Morris (Witte) in [18] (also see Ghys [9] and Burger and Monod [3]). The corollary above holds for a large family of lattices that contain two commuting sublattices that satisfy the hypothesis of Theorem 1.5.…”
Section: Kazhdan Groupsmentioning
confidence: 93%
“…T ] should be trivial, since any C 0 -action of such a on S 1 is trivial, by a result of D Witte [40].…”
Section: Comments and Open Questionsmentioning
confidence: 99%
“…L'un des phénomènes principaux qui permettent de justifier cette affirmation est donné par un théorème obtenu par l'auteur dans [27], lequel généralise dans plusieurs directions des résultats contenus dans [4], [5], [11], [16], [34], [39] et [40] (valables toutefois sous des hypothèses de régularité plus faibles). Rappelons qu'un groupe topologique localement compact possède la propriété (T) de Kazhdan si toute représentation affine (isométrique) de sur un espace de Hilbert admet un vecteur invariant.…”
Section: Introductionunclassified