Abstract. The binomial coefficient of two words u and v is the number of times v occurs as a subsequence of u. Based on this classical notion, we introduce the m-binomial equivalence of two words refining the abelian equivalence. The m-binomial complexity of an infinite word x maps an integer n to the number of m-binomial equivalence classes of factors of length n occurring in x. We study the first properties of m-binomial equivalence. We compute the m-binomial complexity of the Sturmian words and of the Thue-Morse word. We also mention the possible avoidance of 2-binomial squares.