In this note we introduce a finite abelian group that can be associated to any finite connected graph. This group can be defined in an elementary combinatorial way in terms of chip-firing operations, and has been an object of interest in combinatorics, algebraic geometry, statistical physics, and several other areas of mathematics. We will begin with basic definitions and examples and develop a number of properties that can be derived by looking at this group from different angles. Throughout, we will give exercises, some of which are straightforward and some of which are open questions. We will also attempt to highlight some of the many contributions to this area made by undergraduate students.Suggested prerequisites. The basic definitions and themes of this note should be accessible to any student with some knowledge of linear algebra and group theory. As we go along, deeper understanding of graph theory, abstract algebra, and algebraic geometry will be of use in some sections.