Die vorliegende Dissertation befasst sich mit der Synthese und Untersuchung funktioneller Materialien für die Modifizierung von Grenz- und Oberflächen. Einen wichtigen Einfluss auf die Bildung der untersuchten, hochgeordneten Strukturen hat das Konzept der Selbstanordnung, dessen Grundlage schwache Wechselwirkungen sind. Ihre Ausbildung erfordert das Vorliegen geeigneter, funktioneller Gruppen in den Präkursoren und damit die Nutzung der vielfältigen Möglichkeiten der chemischen Synthese zur Bereitstellung maßgeschneidert funktionalisierter Moleküle. Den fünf Projekten dieser Arbeit gemeinsam ist daher die Synthese und Untersuchung für den jeweiligen Anwendungszweck geeigneter, dipolarer Präkursor-Moleküle, die zur Ausbildung funktioneller Koordinationspolymere (CPs) bzw. Metall-organischer Gerüstverbindungen (MOFs) und selbstanordnender Monolagen (SAMs) genutzt werden können. In Zusammenarbeit mit Kooperationspartnern wurden auf dieser Grundlage Untersuchungen zur Anwendbarkeit der erhaltenen Materialien in der Sensorik und zur Oberflächenfunktionalisierung durchgeführt. Im ersten Projekt dieser Dissertation erfolgte die Untersuchung der Bildungs- und Phasenumwandlungsreaktionen von zehn verschiedenen Kupfer-Terephthalat Koordinationspolymeren. Neben bereits bekannten Koordinationspolymeren konnten so auch drei bisher literaturunbekannte CPs hergestellt und ihre Strukturen durch Kooperationspartner gelöst bzw. Strukturvorschläge gemacht werden. Die Identifikation und Auseinandersetzung mit strukturstabilisierenden Wechselwirkungen schließen dieses Projekt ab und bilden die Grundlage für die Untersuchung der Synthese und Stabilität abgeleiteter, komplexerer Koordinationspolymere. Im Fokus des zweiten Projekts steht 𝛽-Cu2(bdc)(OH)2, ein Kupfer-Terephthalat Koordinationspolymer, dessen Kristallstruktur zuvor nicht bekannt war, im vorliegenden Projekt aber durch Kooperationspartner auf Basis des Röntgenpulverdiffraktogramms des Materials gelöst werden konnte. Der Vergleich der analytischen Daten von 𝛽-Cu2(bdc)(OH)2 mit der Literatur zeigte gute Übereinstimmungen u. a. der Diffraktogramme und IR-Spektren mit dem in der Literatur als SURMOF-2 bezeichneten, oberflächengebundenen Schichtmaterial. Aufgrunddessen kann davon ausgegangen werden, dass es sich bei SURMOF-2 um 𝛽-Cu2(bdc)(OH)2 handelt, und folglich dessen Kristallstrukturlösung die beiden bisher in der Literatur vorhandenen Strukturvorschläge für SURMOF-2 ersetzt. Im Rahmen des dritten Projekts sollten für die Sensorik anwendbare, MOF-basierte Dünnschichtsysteme hergestellt werden. Das Sensorkonzept, das auf der Änderung des dielektrischen Verhaltens der MOFs bei Einlagerung dipolarer Analytmoleküle beruht, erfordert den Einsatz dipolarer Liganden in den entsprechenden Koordinationsnetzwerken. Hierfür wurden mehrere teilweise dipolare pillar-Liganden synthetisiert und diese für den Aufbau von Kupfer(II)terephthalat-basierten pillared-layer MOFs eingesetzt. Im Rahmen des Projekts konnten so auf Grundlage der Erkenntnisse aus Projekt 1 und in Zusammenarbeit mit Kooperationspartnern neue pillared-layer MOFs hergestellt und ihre Kristallstrukturen gelöst werden. Die abschließend durch Kooperationspartner erfolgte Abscheidung dünner, oberflächengebundener Schichten dieser MOFs und erste Untersuchungen hinsichtlich ihrer Eignung für die geplante Sensorikanwendung runden das Projekt ab. Im vierten Projekt sollte eine geeignete, in situ abspaltbare Schutzgruppe für die Thiolgruppe etabliert und ihr Einfluss auf die Bildung von Terphenylthiolat-SAMs untersucht werden. Diese Voraussetzung erfüllt die im Rahmen dieser Arbeit am Beispiel von CH3-, F- und CF3-terminierten Terphenylthiolen etablierte 3,4-Dimethoxybenzyl-Gruppe, die sich durch den Zusatz von Trifluoressigsäure in der Abscheidungslösung in situ abspalten lässt. Zum Vergleich wurden von Kooperationspartner Monolagen aus den entsprechenden freien Thiolen abgeschieden und untersucht. Schichtdicken, Packungsdichten, Kippwinkel und Elementarzellen von Monolagen aus freien und geschützten Terphenylthiolen zeigen gute Übereinstimmungen. Im Gegensatz zu anderen, ebenfalls in situ abspaltbaren Gruppen hat die Anwesenheit der 3,4-Dimethoxybenzyl-Gruppe folglich keinen negativen Einfluss auf die Struktur und Qualität der gebildeten Monolagen. In Fortführung des vorangegangenen Projekts wurde im abschließenden Projekt in Zusammenarbeit mit Kooperationspartnern der Einfluss verschiedener Kopfgruppen (H-, CH3-, F-, CF3- und SF5-) und der Länge des aromatischen Rückgrats (Phenyl-, Biphenyl- und Terphenyl-) auf die Ladungstransporteigenschaften der entsprechenden SAMs untersucht. Mit Ausnahme einiger Benzolthiole, lieferten alle betrachteten Präkursoren hochgeordnete, dicht gepackte Schichten aus aufrecht angeordneten Molekülen. Wie erwartet korreliert die Austrittsarbeit der modifizierten Oberflächen mit dem Dipolmoment der jeweiligen Kopfgruppe, wobei der Effekt der SF5-Gruppe mit einer erzielten Austrittsarbeit von annähernd 6 eV besonders hervorzuheben ist. Den Erwartungen entsprechend, sinkt die elektrische Stromdichte bei gleichbleibender Kopfgruppe mit steigender Moleküllänge. Die Stromdichte ist außerdem von der Kopfgruppe abhängig und nimmt von CH3- über H-, CF3- und SF5- bis hin zu F- ab, korreliert aber folglich nicht mit der Austrittsarbeit oder dem Dipolmoment.