Electrolytic water splitting with evolution of both hydrogen (HER) and oxygen (OER) is an attractive way to produce clean energy hydrogen. It is critical to explore effective, but low-cost electrocatalysts for the evolution of oxygen (OER) owing to its sluggish kinetics for practical applications. Fe-based catalysts have advantages over Ni- and Co-based materials because of low costs, abundance of raw materials, and environmental issues. However, their inefficiency as OER catalysts has caused them to receive little attention. Herein, the FeS2/C catalyst with porous nanostructure was synthesized with rational design via the in situ electrochemical activation method, which serves as a good catalytic reaction in the OER process. The FeS2/C catalyst delivers overpotential values of only 291 mV and 338 mV current densities of 10 mA/cm2 and 50 mA/cm2, respectively, after electrochemical activation, and exhibits staying power for 15 h.