This paper reviews sintered silver (s-Ag) die-attach materials for wide band gap (WBG) semiconductor packaging. WBG devices that die-attach with s-Ag have attracted a lot of attention owing to their low energy loss and high temperature operation capabilities. For their practical operation, a reliability design should be established based on the failure of physics of the s-Ag die layer. This paper first focuses on the material characteristics of the s-Ag and tensile mechanical properties. Then, the s-Ag die-attach reliability is assessed with high-temperature storage, power cycling, and thermal shock tests. Each fracture mode was discussed by considering both the fracture surface analysis results and its mechanical properties. Finally, the effective reliability design parameters of the s-Ag die layer are introduced.