It has been known for some time that the application of ultrasound can enhance the efficacy of thrombolytic medications such as recombinant tissue plasminogen activator (rt-PA). Potential clinical applications of this ultrasound-enhanced thrombolysis (UET) include the treatment of myocardial infarction, acute ischemic stroke, deep venous thrombosis and other thrombotic disorders. It may be possible to reduce the dose of rt-PA while maintaining lytic efficacy; however there is little data on the rt-PA concentration dependence of UET. In this work, the rt-PA concentration dependence of clot lysis resulting from 120 kHz UET exposure was measured in an in vitro human clot model. Clots were exposed to rt-PA for 30 min, with (UET treated) or without 120 kHz ultrasound (rt-PA treated) at 37 degrees C, and the clot width measured as a function of time. The rt-PA concentration ranged from 0-10 microg/mL. The initial lytic rate for the UET-treated group was greater than that of the rt-PA group at almost all rt-PA concentrations, and exhibited a maximum over concentration values of 1-3 microg/mL.