With the advantages of superior energy density, lithium-sulfur batteries (LSBs) have been considered as one of the promising next-generation batteries. However, some key issues, such as the shuttle effect of the intermediate lithium polysulfides, poor conductivity of the sulfur, Li 2 S and Li 2 S 2 , and huge volume variation during charge/discharge process, have hindered its development. In this respect, a variety of nanomaterials have been used to overcome the abovementioned defects. Among them, two-dimensional (2D) nanomaterials present unique merits for enhancing the electrochemical performance of LSBs owing to their unique structural properties. Nevertheless, the variation of 2D nanomaterials used in LSBs is rarely discussed. Herein, this work systematically reviews the state-of-the-art progress in LSB cathode development through 2D materials such as graphene, MXenes, 2D compounds, and so forth. With a comprehensive analysis, the challenges and perspectives for 2D nanomaterials in LSBs application are proposed and discussed.