Inorganic arsenic species in ambient particulate matter (PM 10 and PM 2.5 ) have been determined in an urban area, in the vicinity of a metallurgical industrial plant. The developed high performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS) method allows monitoring of particulate As(III) and As(V)-species, with a limit of quantification of 0.34 ng m À3 As(III) and 0.23 ng m À3 As(V), respectively. Good agreement was obtained between the sum of the concentrations of As(III) and As(V) determined by HPLC/ICP-MS and the total As concentrations determined by XRF, indicating a complete extraction of the As species. During the measuring campaigns for PM 10 and PM 2.5 , a significant conversion (oxidation) up to 54% of exogenous spiked As(III) was observed. The total amount of the spiked As(III) was well-recovered (PM 10 and PM 2.5 on average 108% and 101%, respectively). The extraction of the filter in combination with the sampled air matrix is likely to induce the As(III) conversion. The average measured As concentration in PM 10 during a 40-day monitoring campaign (30 ng m À3 ) at a hot spot location is above the European target value of 6 ng m À3 . The measured As concentration in PM 2.5 was half the value of the measured concentration in PM 10 and no relative enrichment of total As was observed in either particulate matter fractions. However, in PM 10 , As(V) was the main component, while in PM 2.5 , As(III) was the dominant species. During the monitoring campaign, the fraction of particulate As(III) varied between 19 and 61% in PM 10 and a trend towards a higher fraction of As(III) with increasing concentration of total As was observed. XANES and XRD analyses were used for the identification of arsenic species in local PM sources and confirmed the presence of Ca 3 Sr 2 (AsO 4 ) 2.5 (PO 4 ) 0.5 (OH), As 2 O 3 and As 2 O 5 species.