This document reflects the effort of constructing a basis for understanding attitude motion within a multi-body problem with application to spacecraft flight dynamics. The circular restricted three-body problem (CR3BP) is employed as a model for the orbital motion.Then, attitude dynamics is discussed within the CR3BP. Conditions for bounded attitude librations and techniques for the identification of such behavior are presented: initially for a spacecraft fixed at an orbital equilibrium point, and later for a vehicle that moves on non-linear periodic orbit. While previous works focus on specific challenges, this analysis serves to create a more general framework for attitude dynamics within the CR3BP. A larger framework enables additional observations. For example, a linkage is noted between regions of bounded motion that may appear on an attitude grid search map and families of periodic attitude solutions. Finally, coupling effects between attitude and orbit dynamics within the CR3BP, ones that enable new options for trajectory design, are considered an important opportunity, and should be included in a general framework. As a proof of that concept, sailcraft trajectories are generated within a coupled orbit-attitude model only using a sequence of constant commands for the attitude actuators.