Hepatocyte growth factor (HGF) exclusively stimulates the growth of endothelial cells without replication of vascular smooth muscle cells, and acts as a survival factor against endothelial cell death. Recently, a novel therapeutic strategy for ischemic diseases using angiogenic growth factors to expedite and/or augment collateral artery development has been proposed. We have previously reported that intraarterial administration of recombinant HGF induced angiogenesis in a rabbit hindlimb ischemia model. In this study, we examined the feasibility of gene therapy using HGF to treat peripheral arterial disease rather than recombinant therapy, due to its disadvantages. Initially, we examined the transfection of 'naked' human HGF plasmid into a rat hindlimb ischemia model. Intramuscular injection of human HGF plasmid resulted in a significant increase in blood flow as assessed by laser Doppler imaging, accompanied by the detection of human HGF protein. A significant increase in capillary density was found in rats transfected with human HGF as compared with control vector, in a dose-dependent manner (P Ͻ 0.01). Importantly, at 5 weeks after transfection, the degree of angiogenesis induced by transfection of HGF plasmid was significantly greater than that caused by