Instrument cost is one of the factors limiting the adoption of optical coherence tomography (OCT) from a wider range of applications. We present a couple of OCT devices using optical components which are commonly found in undergraduatelevel optics laboratories. These low-cost devices have lower signal-to-noise ratios (SNR) than top-of-the-line commercial offerings, yet can serve most of the needs of academic laboratories. A time-domain full-field (TD-FF-) OCT device has been assembled with Arduino control, which yields sub-4-μm axial and lateral resolutions. This device is useful where quick sample acquisition is not critical, but high resolution is paramount, for example with samples from material-science, or exvivo stabilized biological samples. Next, we discuss a spectral-domain (SD-) OCT device which delivers real-time video rate B-scans. This device is useful where real-time signal acquisition is desirable, for example with in-vivo biological samples. Cross-platform open-source software control for both these devices is also made available.