This paper reviews existing works on (deep) reinforcement learning considerations in electric power system control. The works are reviewed as they relate to electric power system operating states (normal, preventive, emergency, restorative) and control levels (local, household, microgrid, subsystem, wide-area). Due attention is paid to the control-related problems considerations (cyber-security, big data analysis, short-term load forecast, and composite load modelling). Observations from reviewed literature are drawn and perspectives discussed. In order to make the text compact and as easy as possible to read, the focus is only on the works published (or "in press") in journals and books while conference publications are not included. Exceptions are several work available in open repositories likely to become journal publications in near future. Hopefully this paper could serve as a good source of information for all those interested in solving similar problems.