Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objectives The aim of the present consensus paper was to provide recommendations for clinical practice considering the use of visual examination, dental radiography and adjunct methods for primary caries detection. Materials and methods The executive councils of the European Organisation for Caries Research (ORCA) and the European Federation of Conservative Dentistry (EFCD) nominated ten experts each to join the expert panel. The steering committee formed three work groups that were asked to provide recommendations on (1) caries detection and diagnostic methods, (2) caries activity assessment and (3) forming individualised caries diagnoses. The experts responsible for “caries detection and diagnostic methods” searched and evaluated the relevant literature, drafted this manuscript and made provisional consensus recommendations. These recommendations were discussed and refined during the structured process in the whole work group. Finally, the agreement for each recommendation was determined using an anonymous Delphi survey. Results Recommendations (N = 8) were approved and agreed upon by the whole expert panel: visual examination (N = 3), dental radiography (N = 3) and additional diagnostic methods (N = 2). While the quality of evidence was found to be heterogeneous, all recommendations were agreed upon by the expert panel. Conclusion Visual examination is recommended as the first-choice method for the detection and assessment of caries lesions on accessible surfaces. Intraoral radiography, preferably bitewing, is recommended as an additional method. Adjunct, non-ionising radiation methods might also be useful in certain clinical situations. Clinical relevance The expert panel merged evidence from the scientific literature with practical considerations and provided recommendations for their use in daily dental practice.
Objectives The aim of the present consensus paper was to provide recommendations for clinical practice considering the use of visual examination, dental radiography and adjunct methods for primary caries detection. Materials and methods The executive councils of the European Organisation for Caries Research (ORCA) and the European Federation of Conservative Dentistry (EFCD) nominated ten experts each to join the expert panel. The steering committee formed three work groups that were asked to provide recommendations on (1) caries detection and diagnostic methods, (2) caries activity assessment and (3) forming individualised caries diagnoses. The experts responsible for “caries detection and diagnostic methods” searched and evaluated the relevant literature, drafted this manuscript and made provisional consensus recommendations. These recommendations were discussed and refined during the structured process in the whole work group. Finally, the agreement for each recommendation was determined using an anonymous Delphi survey. Results Recommendations (N = 8) were approved and agreed upon by the whole expert panel: visual examination (N = 3), dental radiography (N = 3) and additional diagnostic methods (N = 2). While the quality of evidence was found to be heterogeneous, all recommendations were agreed upon by the expert panel. Conclusion Visual examination is recommended as the first-choice method for the detection and assessment of caries lesions on accessible surfaces. Intraoral radiography, preferably bitewing, is recommended as an additional method. Adjunct, non-ionising radiation methods might also be useful in certain clinical situations. Clinical relevance The expert panel merged evidence from the scientific literature with practical considerations and provided recommendations for their use in daily dental practice.
Background The detection and early diagnosis of root fractures can be challenging; this difficulty applies particularly to newly qualified dentists. Aside from clinical examination, diagnosis often requires radiographic assessment. Nonetheless, human fallibility can introduce errors due to a lack of experience. Aim The proposed system aimed to assist in detecting root fractures through the integration of artificial intelligence techniques into the diagnosis process as a step for automating dental diagnosis and decision-making processes. Materials and method A total of 400 radiographic images of fractured and unfractured teeth were obtained for the present research. Data handling techniques were implemented to balance the distribution of the samples. The AI-based system used the voting technique for five different pretrained models namely, VGG16, VGG19, ResNet50. DenseNet121, and DenseNet169 to perform the analysis. The parameters used for the analysis of the models are loss and accuracy curves. Results VGG16 exhibited notable success with low training and validation losses (0.09% and 0.18%, respectively), high specificity, sensitivity, and positive predictive value (PPV). VGG19 showed potential overfitting concerns, while ResNet50 displayed progress in minimizing loss but exhibited bias toward unfractured cases. DenseNet121 effectively addressed overfitting and noise issues, achieving balanced metrics and impressive PPVs for both fractured and unfractured cases (0.933 and 0.898 respectively). With increased depth, DenseNet169 demonstrated enhanced generalization capability. Conclusion The proposed AI- based system demonstrated high precision and sensitivity for detecting root fractures in endodontically treated teeth by utilizing the voting method.
Endodontics is the dental specialty foremost concerned with diseases of the pulp and periradicular tissues. Clinicians often face patients with varying symptoms, must critically assess radiographic images in 2 and 3 dimensions, derive complex diagnoses and decision making, and deliver sophisticated treatment. Paired with low intra- and interobserver agreement for radiographic interpretation and variations in treatment outcome resulting from nonstandardized clinical techniques, there exists an unmet need for support in the form of artificial intelligence (AI), providing automated biomedical image analysis, decision support, and assistance during treatment. In the past decade, there has been a steady increase in AI studies in endodontics but limited clinical application. This review focuses on critically assessing the recent advancements in endodontic AI research for clinical applications, including the detection and diagnosis of endodontic pathologies such as periapical lesions, fractures and resorptions, as well as clinical treatment outcome predictions. It discusses the benefits of AI-assisted diagnosis, treatment planning and execution, and future directions including augmented reality and robotics. It critically reviews the limitations and challenges imposed by the nature of endodontic data sets, AI transparency and generalization, and potential ethical dilemmas. In the near future, AI will significantly affect the everyday endodontic workflow, education, and continuous learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.