Authors' contributionWkład autorów: A. Study design/planning zaplanowanie badań B. Data collection/entry zebranie danych C. Data analysis/statistics dane -analiza i statystyki D. Data interpretation interpretacja danych E. Preparation of manuscript przygotowanie artykułu F. Literature analysis/search wyszukiwanie i analiza literatury G. Funds collection zebranie funduszy
SummaryPressure injuries are a serious medical problem that both negatively affects the patient's quality of life and results in significant healthcare costs. In cases where a patient doesn't receive appropriate treatment and care, death may result. Nurses play critical roles in the prevention, care, and treatment of pressure injuries as members of the healthcare team who closely monitor the health status of the patient. Today, the use of artificial intelligence is becoming more prevalent in healthcare, as in many other areas. Artificial intelligence is a method that aims to solve complex problems by using computers to mathematically simulate the way the brain works. In this article, we compile and share information about a deep learning model developed for the detection and classification of pressure injuries. Deep learning can operate on many types of data. Convolutional Neural Networks (CNN) prefer images because they can handle 2D arrays. In this case, the images, annotated according to the National Pressure Injury Advisory Panel pressure injury classification system, have been fed into a deep learning model using CNN. The developed CNN model has a 97% success in detecting and classifying pressure injuries, and as more images are collected and fed into the CNN, the prediction accuracy will increase. This deep learning model allows for the automatic detection and classification of pressure injuries, an indicator of health outcomes, at an early stage and for quick and accurate intervention. In this context, it is expected that the quality of nursing care will increase, the prevalence of pressure injury will decrease, and the economic burden of this health problem will decrease.