2023
DOI: 10.3389/fonc.2023.1099360
|View full text |Cite
|
Sign up to set email alerts
|

Artificial intelligence annotated clinical-pathologic risk model to predict outcomes of advanced gastric cancer

Abstract: BackgroundGastric cancer with synchronous distant metastases indicates a dismal prognosis. The success in survival improvement mainly relies on our ability to predict the potential benefit of a therapy. Our objective is to develop an artificial intelligence annotated clinical-pathologic risk model to predict its outcomes.MethodsIn participants (n=47553) with gastric cancer of the surveillance, epidemiology, and end results program, we selected patients with distant metastases at first diagnosis, complete clini… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 33 publications
0
0
0
Order By: Relevance