2019
DOI: 10.1007/978-3-030-32388-2_51
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Intelligence Approaches for Urban Water Demand Forecasting: A Review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2025
2025

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 107 publications
0
2
0
1
Order By: Relevance
“…Muhammad, and Feng investigated several artificial intelligence techniques such as support vector machine, artificial neural networks, fuzzy logic, and extreme learning machines as well as hybrid models and Autoregressive Integrated Moving Average (ARIMA) in urban water demand forecasting. They concluded that artificial intelligence methods showed superiority especially Artificial Neural Networks for short-term water demand forecasting [24].…”
Section: Related Workmentioning
confidence: 99%
“…Muhammad, and Feng investigated several artificial intelligence techniques such as support vector machine, artificial neural networks, fuzzy logic, and extreme learning machines as well as hybrid models and Autoregressive Integrated Moving Average (ARIMA) in urban water demand forecasting. They concluded that artificial intelligence methods showed superiority especially Artificial Neural Networks for short-term water demand forecasting [24].…”
Section: Related Workmentioning
confidence: 99%
“…From a "modellistic" point of view, the AutoRegressive Integrated Moving Average (ARIMA) typology of models is well established, having been applied in the field of water demand forecasting for a long time [8][9][10][11]. This is justified by the fact that the model follows the trend at different time scales.…”
Section: Introductionmentioning
confidence: 99%
“…En el trabajo de revisión titulado "Enfoques de inteligencia artificial para el pronóstico de la demanda de agua urbana" Muhammad et al (2019) realiza un análisis de diferentes enfoques de IA e híbridos, demostrando la utilidad y las aplicaciones de cada modelo como solución para la previsión de la demanda de agua. La revisión muestra que no existe un único modelo híbrido o de inteligencia artificial que parezca ser el mejor; asimismo, la IA se puede aplicar con éxito para la estimación de dichas predicciones.…”
Section: Gestión Inteligente De Las Redes De Abastecimientounclassified