Havanın sıcaklık ve nem parametreleri canlı yaşamı başta olmak üzere tarım, ulaşım gibi birçok alanı etkilemektedir. Bu sebepten dolayı bu parametrelerin gelecekteki değerlerini doğru tahmin etmek önemlidir. Bu çalışmada, Tekirdağ ili Süleymanpaşa ilçesi için oluşturulan model sistem üzerinden ve Meteoroloji İl Müdürlüğünden alınan sıcaklık ve nem veri setleri kullanılarak, derin öğrenme tekniklerinden LSTM algoritmaları ile sıcaklık ve nem tahmini yapılmıştır. Tek sensör üzerinden alınan verilerde gürültü kaynaklı hatalardan dolayı çoklu sensörlerden gelen veriler birleştirilerek veri seti oluşturulmuştur. 2015-2021 yılları arasındaki Tekirdağ Meteoroloji İl Müdürlüğünden alınmış sıcaklık ve nem verileri, oluşturulan model sistem üzerinden alınan 2020 yılına ait sıcaklık ve nem verileri ile sensör füzyonu uygulanarak veri seti elde edilmiştir. Bu veri seti ile 2022 yılına ait sıcaklık ve nem verileri derin öğrenme algoritmaları ile tahmin edilmiştir. Zamana göre sıralı olarak gelen veriler için derin öğrenme algoritmalarından Long Short Term Memories (LSTM) kullanılmıştır. Tahmin edilen veriler yine Tekirdağ Meteoroloji İl Müdürlüğünden alınan 2022 yılına ait gerçek veriler ile karşılaştırılmıştır. Bu tahminde başarı ölçütleri olarak RMSE 1.895, MSE 3.547, R-kare skoru değerinin 0.952 ve MAE 1,614 olarak hesaplanmıştır. Zamana göreli sıralı biçimde gelen verilerde bu algoritmanın kullanılabileceği görülmüştür. Oluşturulan model sistem PLC ve SCADA tabanlıdır.