2024
DOI: 10.1038/s41598-024-78081-3
|View full text |Cite
|
Sign up to set email alerts
|

Artificial intelligence-assisted magnetic resonance imaging technology in the differential diagnosis and prognosis prediction of endometrial cancer

Xinyu Qi

Abstract: It aimed to analyze the value of deep learning algorithm combined with magnetic resonance imaging (MRI) in the risk diagnosis and prognosis of endometrial cancer (EC). Based on the deep learning convolutional neural network (CNN) architecture residual network with 101 layers (ResNet-101), spatial attention and channel attention modules were introduced to optimize the model. A retrospective collection of MRI image data from 210 EC patients was used for model segmentation and reconstruction, with 140 cases as th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?