“…For feature extraction, deep learning uses network architectures, such as convolutional neural networks (CNNs) (Ağralı et al;Akosman, Öktem, Moral, & Kılıç, 2021;Çaylı, Kılıç, Onan, & Wang, 2022;Keskin, Moral, Kılıç, & Onan, 2021;B. Kilic, Dogan, Kilic, & Kahyaoglu, 2022;Sayraci, Agrali, & Kilic, 2023;Şen et al, 2022;Yüzer, Doğan, Kılıç, & Şen, 2022), reinforcement learning (Agrali, Soydemir, Gökçen, & Sahin, 2021), and recurrent neural networks (RNNs) (Aydın, Çaylı, Kılıç, & Onan, 2022;Fetiler, Caylı, Moral, Kılıc, & Onan, 2021;Gölcez, Kiliç, & Şen, 2019;Keskin, Çaylı, Moral, Kılıc, & Onan, 2021;Kılıc, 2021;Volkan Kılıç;Kökten & Kılıç, 2021;Mercan, Doğan, & Kılıç, 2020;Mercan & Kılıç, 2021;Palaz, Doğan, & Kılıç, 2021). Among these architectures, CNN offers remarkable performance on ischemic stroke disease segmentation.…”