2019
DOI: 10.1016/j.icte.2019.03.003
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
26
0
5

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 59 publications
(31 citation statements)
references
References 1 publication
0
26
0
5
Order By: Relevance
“…Accuracy, precision, and recall scores associated with this perfect AUC score were 99.97%, 99.96%, and 100%, respectively. No information was provided on the MLP classifier, but it is most likely the same two-layer network as in [26]. The main shortcoming of this paper is the lack of detail.…”
Section: Kanimozhi and Jacob [27] (Calibration Of Various Optimized Mmentioning
confidence: 99%
“…Accuracy, precision, and recall scores associated with this perfect AUC score were 99.97%, 99.96%, and 100%, respectively. No information was provided on the MLP classifier, but it is most likely the same two-layer network as in [26]. The main shortcoming of this paper is the lack of detail.…”
Section: Kanimozhi and Jacob [27] (Calibration Of Various Optimized Mmentioning
confidence: 99%
“…In the following section, an importanted works has been studied to investigate (NIDS), the following are the most important works: In [11] a proposed system was detecte a botnet attack classification that represent a famous attacks in banking services and financial transactions. The proposed system applied neural network on a realistic dataset of cyber defence (CSE-CIC-IDS2018).…”
Section: Related Workmentioning
confidence: 99%
“…As shown in table because all 78 features of CSE-CIC-IDS2018 datasetare used. In paper [11] the proposed system designed for a classification to detect botnet attack only in CSE-CIC-IDS2018 that represent a serious threat in banking services. This work used six types of machine learning algorithm on CSE-CIC-IDS2018 with fourteen types of attacks for training and different eight types from zero day attacks for testing [12].…”
Section: Comparitive Analysismentioning
confidence: 99%
“…Вместе с тем в работе не уточняются итоговые настройки используемой модели и не подтверждается их оптимальность. В работе [5] рассматривается применение технологий нейронных сетей для обнаружения ботнет-атак. Предлагаемая модель (многослойный персептрон), обученная на публичном наборе данных CSE-CIC-IDS2018, демонстрирует на тестовых данных высокое качество обнаружения -близкое к единице значение F1-меры.…”
Section: постановка задачи и релевантные работыunclassified
“…Однако данный подход не позволяет обнаруживать новые виды деструктивных воздействий [2], что делает актуальным задачу разработки эвристических методов, способных детектировать ранее неизвестные типы атак [3]. Проведенный анализ ряда опубликованных на данный момент исследований [3][4][5][6] подтверждает возможность применения технологий машинного обучения для решения задач обнаружения компьютерных атак. Данное обстоятельство обусловливает целесообразность проведения прикладных исследований в указанной области, направленных на выработку конкретных предложений по построению моделей обнаружения и перспектив их практической реализации.…”
Section: Introductionunclassified