Artificial intelligence bias in the prediction and detection of cardiovascular disease
Ariana Mihan,
Ambarish Pandey,
Harriette G. C. Van Spall
Abstract:AI algorithms can identify those at risk of cardiovascular disease (CVD), allowing for early intervention to change the trajectory of disease. However, AI bias can arise from any step in the development, validation, and evaluation of algorithms. Biased algorithms can perform poorly in historically marginalized groups, amplifying healthcare inequities on the basis of age, sex or gender, race or ethnicity, and socioeconomic status. In this perspective, we discuss the sources and consequences of AI bias in CVD pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.