Breast cancer (BC) is the second most common cause of deaths reported in women worldwide, and therefore there is a need to identify BC patients at an early stage as timely diagnosis would help in effective management and appropriate monitoring of patients. This will allow for proper patient monitoring and effective care. However, the absence of a particular biomarker for BC early diagnosis and surveillance makes it difficult to accomplish these objectives. miRNAs have been identified as master regulators of the molecular pathways that are emphasized in various tumors and that lead to the advancement of malignancies. Small, non-coding RNA molecules known as miRNAs target particular mRNAs to control the expression of genes. miRNAs dysregulation has been linked to the start and development of a number of human malignancies, including BC, since there is compelling evidence that miRNAs can function as tumor suppressor genes or oncogenes. The current level of knowledge on the role of miRNAs in BC diagnosis, prognosis, and treatment is presented in this review. miRNAs can regulate the tumorigenesis of BC through targeting PI3K pathway and can be used as prognostic or diagnostic biomarkers for BC therapy. Some miRNAs, like miR-9, miR-10b, and miR-17-5p, are becoming known as biomarkers of BC for diagnosis, prognosis, and therapeutic outcome prediction. Other miRNAs, like miR-30c, miR-187, and miR-339-5p, play significant roles in the regulation of hallmark functions of BC, including invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs, such as miR-155 and miR-210, are circulating in bodily fluids and are therefore of interest as novel, conveniently accessible, reasonably priced, non-invasive methods for the customized care of patients with BC.