Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Artificial Intelligence (AI) holds promise for transforming healthcare, with AI models gaining increasing clinical use in surgery. However, new AI models are developed without established standards for their validation and use. Before AI can be widely adopted, it is crucial to ensure these models are both accurate and safe for patients. Without proper validation, there is a risk of integrating AI models into practice without sufficient evidence of their safety and accuracy, potentially leading to suboptimal patient outcomes. In this work, we review the current use and validation methods of AI models in clinical surgical settings and propose a novel classification system. Methods: A systematic review was conducted in PubMed and Cochrane using the keywords “validation”, “artificial intelligence”, and “surgery”, following PRISMA guidelines. Results: The search yielded a total of 7627 articles, of which 102 were included for data extraction, encompassing 2,837,211 patients. A validation classification system named Surgical Validation Score (SURVAS) was developed. The primary applications of models were risk assessment and decision-making in the preoperative setting. Validation methods were ranked as high evidence in only 45% of studies, and only 14% of the studies provided publicly available datasets. Conclusions: AI has significant applications in surgery, but validation quality remains suboptimal, and public data availability is limited. Current AI applications are mainly focused on preoperative risk assessment and are suggested to improve decision-making. Classification systems such as SURVAS can help clinicians confirm the degree of validity of AI models before their application in practice.
Background: Artificial Intelligence (AI) holds promise for transforming healthcare, with AI models gaining increasing clinical use in surgery. However, new AI models are developed without established standards for their validation and use. Before AI can be widely adopted, it is crucial to ensure these models are both accurate and safe for patients. Without proper validation, there is a risk of integrating AI models into practice without sufficient evidence of their safety and accuracy, potentially leading to suboptimal patient outcomes. In this work, we review the current use and validation methods of AI models in clinical surgical settings and propose a novel classification system. Methods: A systematic review was conducted in PubMed and Cochrane using the keywords “validation”, “artificial intelligence”, and “surgery”, following PRISMA guidelines. Results: The search yielded a total of 7627 articles, of which 102 were included for data extraction, encompassing 2,837,211 patients. A validation classification system named Surgical Validation Score (SURVAS) was developed. The primary applications of models were risk assessment and decision-making in the preoperative setting. Validation methods were ranked as high evidence in only 45% of studies, and only 14% of the studies provided publicly available datasets. Conclusions: AI has significant applications in surgery, but validation quality remains suboptimal, and public data availability is limited. Current AI applications are mainly focused on preoperative risk assessment and are suggested to improve decision-making. Classification systems such as SURVAS can help clinicians confirm the degree of validity of AI models before their application in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.