2016
DOI: 10.4172/2155-9880.1000473
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Intelligence for the Interpretation of Coronary Computed Tomography Angiography: Can Machine Learning Improve Diagnostic Performance?

Abstract: Recent development of artificial intelligence (AI) and machine learning system has a potential to improve the clinical diagnosis of coronary artery disease. Coronary computed tomography angiography (CCTA) provides important information of coronary arteries: i.e., stenosis severity, lesion length, plaque attenuation, and degree of calcium deposition. However, the comprehensive analysis of these factors may be difficult. We analyzed patient characteristics and CCTA findings of 56 patients. We used AI (a random f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 2 publications
0
0
0
Order By: Relevance