Abstract:Background: Sepsis is a leading cause of morbidity and mortality in the critical care setting. The analysis of hemostatic parameters at admission have been proven to be a predictive marker for development of sepsis in the ICU. The present study aims to develop a machine learning model which can predict the development of sepsis after 72 hours of ICU admission, from initial assessment of hemostatic parameters. Methods: A total of 170 ICU admissions over six months (May 2018 -Dec 2018) period were included in th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.