2019
DOI: 10.18517/ijaseit.9.1.7567
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Intelligence in Diagnosing Tuberculosis: A Review

Abstract: Tuberculosis (TB) is among top ten causes of deaths worldwide. It is the single most cause of deaths by an infectious disease and is ranked 2nd only after the HIV/AIDS. In third world countries, the diagnosis of TB is done through conventional methods. To diagnostic results are obtain from conventional methods such as blood, culture, sputum and biopsies. They are tedious as well as take long time like 1-2 weeks or maybe evenmore. Therefore, to lower the detection time and raise the accuracy of diagnosis severa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
19
1
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
4
1

Relationship

2
7

Authors

Journals

citations
Cited by 43 publications
(22 citation statements)
references
References 51 publications
1
19
1
1
Order By: Relevance
“…El campo de la inteligencia artificial ha progresado hacia una nueva era de aprendizaje profundo. En particular, las redes neuronales convolucionales (convolutional neural networks) son una clase de aprendizaje profundo que utiliza una red neuronal artificial para analizar imágenes visuales (18) . Las redes neuronales convolucionales se han convertido en la técnica preferida para analizar imágenes médicas.…”
Section: El Rol De La Inteligencia Artificial Y Su Relación Con La Saludunclassified
“…El campo de la inteligencia artificial ha progresado hacia una nueva era de aprendizaje profundo. En particular, las redes neuronales convolucionales (convolutional neural networks) son una clase de aprendizaje profundo que utiliza una red neuronal artificial para analizar imágenes visuales (18) . Las redes neuronales convolucionales se han convertido en la técnica preferida para analizar imágenes médicas.…”
Section: El Rol De La Inteligencia Artificial Y Su Relación Con La Saludunclassified
“…In this paper, we employed three CNN architectures, InceptionV3, VGG16 and a custom-built architecture. CNN was selected due to its ability to extract and learn meaningful features on its own [8]. Further readings on InceptionV3 and VGG16 can be found in [22] and [23] respectively.…”
Section: Cnn Classifier Generationmentioning
confidence: 99%
“…For century, challenges for radiologists to avoid confused and misdiagnose tuberculosis to other lung related diseases because they mimic each other [7]. A semi-automated system to effectively classify pulmonary nodules with low false positive rate is deemed necessary to assist radiologist to screen the chest radiograph images [8].…”
Section: Introductionmentioning
confidence: 99%
“…The lower level features help generates the higher-level features. The ability of deep learning to identify high-level features is shown to produce better classification results [7]. Numerous works using deep learning for TB detection on chest x-rays can be found in [8][9][10][11][12][13][14][15][16][17][18][19].…”
Section: Introductionmentioning
confidence: 99%