Nowadays, the analysis of digital media aimed at prediction of the society’s reaction to particular events and processes is a task of a great significance. Internet sources contain a large amount of meaningful information for a set of domains, such as marketing, author profiling, social situation analysis, healthcare, etc. In the case of healthcare, this information is useful for the pharmacovigilance purposes, including re-profiling of medications. The analysis of the mentioned sources requires the development of automatic natural language processing methods. These methods, in turn, require text datasets with complex annotation including information about named entities and relations between them. As the relevant literature analysis shows, there is a scarcity of datasets in the Russian language with annotated entity relations, and none have existed so far in the medical domain. This paper presents the first Russian-language textual corpus where entities have labels of different contexts within a single text, so that related entities share a common context. therefore this corpus is suitable for the task of belonging to the medical domain. Our second contribution is a method for the automated extraction of entity relations in Russian-language texts using the XLM-RoBERTa language model preliminarily trained on Russian drug review texts. A comparison with other machine learning methods is performed to estimate the efficiency of the proposed method. The method yields state-of-the-art accuracy of extracting the following relationship types: ADR–Drugname, Drugname–Diseasename, Drugname–SourceInfoDrug, Diseasename–Indication. As shown on the presented subcorpus from the Russian Drug Review Corpus, the method developed achieves a mean F1-score of 80.4% (estimated with cross-validation, averaged over the four relationship types). This result is 3.6% higher compared to the existing language model RuBERT, and 21.77% higher compared to basic ML classifiers.