In addressing the issue of harmful bias in AI systems, this paper asks for a consideration of a generatively wild AI that exceeds the framework of predictive machine learning. The argument places supervised learning with its labeled training data as primarily a form of reproduction of a status quo. Based on this framework, the paper moves through an analysis of two AI modalities—supervised learning (e.g., machine vision) and unsupervised learning (e.g., game play)—to demonstrate the potential of AI as mechanism that creates patterns of association outside of a purely reproductive condition. This analysis is followed by an introduction to the concept of the technology of the surround, where the paper then turns toward theoretical positions that unbind categorical logics, moving toward other possible positionalities—the surround (Harney and Moten), alien intelligence (Parisi), and intra-actions of subject/object resolution (Barad). The paper frames two key concepts in relation to an AI in the wild: the colonial sublime and black techné. The paper concludes with a summation of what AI in the wild can contribute to the subversion of technologies of oppression toward a liberatory potential of AI.