2022
DOI: 10.1007/s11886-022-01649-w
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Intelligence to Improve Risk Prediction with Nuclear Cardiac Studies

Abstract: Purpose of Review As machine learning-based artificial intelligence (AI) continues to revolutionize the way in which we analyze data, the field of nuclear cardiology provides fertile ground for the implementation of these complex analytics. This review summarizes and discusses the principles regarding nuclear cardiology techniques and AI, and the current evidence regarding its performance and contribution to the improvement of risk prediction in cardiovascular disease. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 28 publications
0
3
0
2
Order By: Relevance
“…No entanto, a implementação bem-sucedida da IA na predição de eventos cardíacos enfrenta desafios significativos. Questões relacionadas à interpretabilidade dos modelos, validação externa em diferentes populações e integração com sistemas de saúde eletrônicos são alguns dos obstáculos que precisam ser abordados (20,21).…”
Section: Predição De Eventos Cardíacosunclassified
“…No entanto, a implementação bem-sucedida da IA na predição de eventos cardíacos enfrenta desafios significativos. Questões relacionadas à interpretabilidade dos modelos, validação externa em diferentes populações e integração com sistemas de saúde eletrônicos são alguns dos obstáculos que precisam ser abordados (20,21).…”
Section: Predição De Eventos Cardíacosunclassified
“…AI algorithms can process and interpret vast amounts of imaging data, identifying patterns and correlations that may not be apparent to the human eye. This can lead to more accurate diagnoses, personalized risk assessments, and optimized treatment strategies based on individual patient data [41].…”
Section: Personalized Therapiesmentioning
confidence: 99%
“…17,18 More recently in cardiology, so identify the potential for identifying diagram and breast attenuation artifact from polar map data to create predictions of normal and abnormal. 19,20 Another approach has recently demonstrated the potential for using a deep learning model to predict attenuation correction factors directly from emission data thereby forgoing the need for acquiring CT or line source attenuation map (TruCor, Spectrum Dynamics, Haifa Israel). The results is attenuation corrected data based solely on the emission data.…”
Section: Using the Deep Learning Modelsmentioning
confidence: 99%