2012
DOI: 10.1007/978-3-642-25507-6_11
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Neural Network (ANN) Based Object Recognition Using Multiple Feature Sets

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…Artificial Neural Network [47] is a computational model, which is used for statistical data modeling over non-linear data. It is a machine learning tool which is inspired by the human brain system and performs learning by replicating the learning system of the human brain.…”
Section: Multiple Objects Recognition Based On Artificial Neural Nmentioning
confidence: 99%
“…Artificial Neural Network [47] is a computational model, which is used for statistical data modeling over non-linear data. It is a machine learning tool which is inspired by the human brain system and performs learning by replicating the learning system of the human brain.…”
Section: Multiple Objects Recognition Based On Artificial Neural Nmentioning
confidence: 99%
“…Generalmente, la red neuronal artificial consta de 3 etapas: la primera involucra el diseño, donde se elige el tipo de red neuronal, la cantidad de neuronas que generara, la función de activación definida y el algoritmo de aprendizaje. La fase de entrenamiento presenta una serie de entradas y salidas a la red neuronal, de las cuales aprende mediante el uso del algoritmo de entrenamiento (Barthakur et al, 2012). Luego, la entrada relevante se alimenta a la red, donde la red genera una salida basada en lo que aprendió durante la fase de entrenamiento.…”
Section: Introductionunclassified