Along with power transmission lines' efficiency, another crucial factor in electrical power transmission networks is reliability, which guarantees power transmission stability. One of the crucial and essential tasks for maintaining the continuity and stability of power transmission in transmission networks Capacity without any significant failures is identifying errors and malfunctions in power transmission lines as soon as possible. The goal of this article is to develop and apply ANN technology to overcome the obstacles faced by the electrical power transmission network. In order for the ANN to learn useful patterns and features from raw current measurements, pre-processing and feature extraction techniques are used during the training process. Real-time applications can benefit from the ANN's architecture, which is optimized for high accuracy, quick response times, and scalability. To validate the performance of the ANN-based fault detection system, extensive simulations are conducted using data from different transmission line scenarios, including various fault types that short-circuit. The results demonstrate the capability of the ANN model to accurately detect and classify faults, as well as disconnect the power grid after detect any fault. The results showed the accuracy and high speed of the proposed method using a neural network compared to traditional methods.